Threeway Steel Co., Ltd
E-mail: sales@srtsteelpipe.com
Address: 22nd Floor, Royal Wing Tower, Long Champ International Building, No.9 Xiangfu Road, Changsha, Hunan, China, PC: 410116Phone:0086-731-8873-9521
Direct reading spectral analysis:
Direct reading spectrometer has the advantages of fast analysis speed, high accuracy, simple operation, and small sample consumption. However, the measurement precision of spectral quantitative analysis of high-content elements is relatively low, and the accuracy is not high. There are several reasons: First, the high content of alloy elements in stainless steel will affect the content of non-metallic elements. In this case, the measurement results of non-metallic element content will be inaccurate; secondly, in the process of detecting the composition of stainless steel, the analysis channel of non-metallic elements will fall into the ultraviolet region, in this case, it will cause deviations in the analysis results; finally, in the process of detecting different types of stainless steel, since the instrument used is the same spectrometer, in this case, it will cause the analysis electrode of the operating table to be contaminated, resulting in a high detection result of the alloy element content, resulting in inaccurate detection results. Another limiting factor of the direct reading spectrometer is that the position of the exit slit used by each instrument has been set before leaving the factory and is not easy to change. This is convenient for routine analysis of fixed elements, but it has poor adaptability to changes in analysis tasks.
X-ray fluorescence spectrometer analysis:
X-ray fluorescence spectrometry has the characteristics of fast analysis speed, relatively simple sample processing, small accidental error, and high analysis accuracy, and has been widely used in steel analysis. X-ray fluorescence spectrometry (XRF) has the advantages of a wide analysis content range and high accuracy when used for stainless steel analysis. Wang Huaming et al. used the basic parameter method and the empirical coefficient method of pH mode to determine Si, Mn, P, S, Ni, Cr, Cu, Mo, V, Ti, Nb, Co, and W in chromium stainless steel and nickel-chromium stainless steel series by X-ray fluorescence spectrometry. The empirical coefficient method and the basic parameter method were combined to correct the absorption-enhancement effect and Puxian overlapping interference between coexisting elements, and the steel spectrum standard sample was determined by X-ray fluorescence spectrometry. The calibration curve was established to complete the quantitative analysis of 15 elements including Al, Si, P, Ti, Cr, Mn, V, Co, Ni, Cu, W, As, Sn, Mo, and Pb. The determination of spectral background, calculation of spectral overlap between coexisting elements, and correction of matrix absorption-enhancement effect in the process of method establishment were discussed. Compared with the literature, this literature adds the analysis of two elements, Sb, and expands the measurement range of elements such as Si, Mn, W, and Ni by 7 times. Due to the characteristics of the X-ray fluorescence spectrometer itself, the accuracy of the detection results of elements with a content of less than 0.01% in stainless steel is not high. In addition, the matrix of the X-ray fluorescence spectrometer has a great influence on the analysis results, and the adaptability of the working curve is poor. If the material changes slightly, the working curve needs to be redrawn, and more standard steel is required.